![]() | ||
![]() ![]() Статьи Быстрые - шаг вперёд к технологии вывода Блок с БН-600 продлён до 2040 года На Ленинградской АЭС завершились испытания ТУК для перевозок ОЯТ ВВЭР-1200 Китай - планы по гибридной станции БФС-1 - физпуск критсборки для МОКС в ВВЭР-С ЧМЗ - рекорд по производству оболочек Россия и Мьянма подписали МПС по АСММ Ленинград-6 - начался монтаж статора генератора Документы Генсхема-2042 (утверждённый вариант) Конференции TerraPower получила разрешение на подготовительные работы на площадке Natrium в штате Вайоминг В мире статус действующего имеют 417 блоков, статус строящегося 62 блока - PRIS 16-17 апреля 2025 года ОКБ ГИДРОПРЕСС проведёт XXV Международную конференцию молодых специалистов В Москве отметили 125-летие со дня рождения Н.А.Доллежаля Пресс-релизы Врачи-онкологи познакомились с производством медицинских изделий в Физико-энергетическом институте Памяти товарища - Красимир Христов В Курчатове открыли мемориальную доску памяти ветерана атомной энергетики Германа Иванова Более 13,7 млрд кВт-ч электроэнергии Смоленская АЭС выдала потребителям за 8 месяцев 2023 года На Белоярской АЭС определили возможные технологии для переработки реакторного натрия В Физико-энергетическом институте начались ремонтные работы в преддверии юбилея Первой в мире АЭС | ![]() Нанокристаллы способны излечиваться от радиационных повреждений - Лос-Аламос Материалы, способные к самовосстановлению, могут прийти в атомную энергетику благодаря исследованиям учёных из национальной лаборатории Лос-Аламоса, считают авторы свежего номера журнала "Science". В статье, опубликованной журналом, описывается механизм, позволяющий нанокристаллическим материалам "излечивать" себя от радиационных повреждений. Речь идёт о материалах, собранных из наночастиц меди, причём размер каждой из отдельных частиц может быть сравним с размерами вирусов. Под воздействием потоков ионизирующего облучения атомы реакторных материалов могут выбиваться со своих "законных" мест, в результате чего создаётся дефект вида "вакансия и внедрённый атом". Накопление микроскопических дефектов оборачивается вполне осязаемыми макроповреждениями - распуханием, отверждением, охрупчиванием и другими известными реакторным материаловедам неприятностями. Особенностью нанокристаллов является высокая доля граничных зон - границ наночастиц, которые играют роль буфера, поглощающего и нейтрализующего дефекты. На основании этого ряд исследователей высказывал предположение, что нанокристаллы окажутся более устойчивыми к радиации, чем традиционные материалы. Изучением эффектов взаимодействия нанокристаллов и потоков ионизирующих частиц с помощью компьютерного моделирования занимается группа специалистов в лаборатории Лос-Аламоса. В своей статье в журнале "Science" они описали новое явление, названное ими как "загрузка-выгрузка" (loading-unloading), происходящее на границах наночастиц. На первом шаге, образовавшиеся под воздействием радиации внедрённые атомы "загружаются", или захватываются границами зон. Этот эффект был известен и ранее. Неожиданным новшеством, подтверждённым расчётами по трём компьютерным моделям, стал второй шаг - перегруженные захваченными свободными атомами граничные зоны "разгружают" их обратно, заполняя ими прилежащие к границам вакансии. Таким образом, за счёт явления "загрузки-выгрузки" нанокристаллы оказываются способными к самолечению, уничтожая два вида радиационных дефектов - образование свободных атомов и вакансий. Для процесса выгрузки требуются определённые энергозатраты, но они невелики по сравнению с другими известными механизмами. Работа специалистов из Лос-Аламоса поможет понять и объяснить найденные ранее экспериментаторами различия в поведении облучённых кристаллов и нанокристаллов, а также сделать следующий шаг на пути к созданию конструкционных материалов для реакторов четвёртого поколения. ИСТОЧНИК: AtomInfo.Ru ДАТА: 25.03.2010 |