Статьи

БФС-1 - физпуск критсборки для МОКС в ВВЭР-С

ЧМЗ - рекорд по производству оболочек

Россия и Мьянма подписали МПС по АСММ

Ленинград-6 - начался монтаж статора генератора

Георгий Тошинский: о ТЖМТ и не только

США - Окридж и лазерное обогащение

АЭС Palisades - вопрос о парогенераторах (часть IV)

Росатом - прототип плазменного ракетного двигателя

Британия - плутоний захоронят

Росатом - МОКС-топливо для реакторов ВВЭР

Документы

Генсхема-2042 (утверждённый вариант)

Конференции

TerraPower получила разрешение на подготовительные работы на площадке Natrium в штате Вайоминг

В мире статус действующего имеют 417 блоков, статус строящегося 62 блока - PRIS

В Димитровграде пройдёт молодёжная конференция специалистов предприятий Росатома и ФМБА России по развитию ядерных технологий

16-17 апреля 2025 года ОКБ ГИДРОПРЕСС проведёт XXV Международную конференцию молодых специалистов

В Москве отметили 125-летие со дня рождения Н.А.Доллежаля

Пресс-релизы

Врачи-онкологи познакомились с производством медицинских изделий в Физико-энергетическом институте

Памяти товарища - Красимир Христов

Более 10 заявок подали работники Физико-энергетического института для участия в отраслевой программе признания Человек года Росатома-2023

Новости ПО Старт

Новости ПО Старт

В Курчатове открыли мемориальную доску памяти ветерана атомной энергетики Германа Иванова

Более 13,7 млрд кВт-ч электроэнергии Смоленская АЭС выдала потребителям за 8 месяцев 2023 года

На Белоярской АЭС определили возможные технологии для переработки реакторного натрия

В Физико-энергетическом институте начались ремонтные работы в преддверии юбилея Первой в мире АЭС

Временный городок строителей Якутской АСММ открыт

Болгарский ядерный сайт

Новый патент Вестингауза на твэлы для реакторов BWR

"Westinghouse Electric Sweden AB", шведское отделение компании "Вестингауз", получило патент на модифицированные твэлы для водяных кипящих реакторов BWR. В патенте защищается идея, позволяющая за счёт добавки моноксида углерода уменьшить последствия разгерметизации топливных элементов, пишет Nuclear Street.

Патент, выданный в США под номером 7 570 728, затрагивает конструкцию твэлов, показанную на рисунке ниже.

Описанный в патенте твэл состоит из внешней трубки (6), сделанной из циркониевого сплава, и внутренней трубки (7) из чистого циркония. Топливные таблетки (9) из UO2 набираются внутри трубки (7), а затем прижимаются сверху пружиной (12). Внизу и верху расположены крепления (5) и (4).

Поток теплоносителя, омывающий твэл, должен быть очищен от механических примесей для минимизации износа поверхности внешней оболочки вследствие трения. На атомных станциях прибегают к изощрённым мерам для контроля за качеством теплоносителя, но несмотря на это, примеси в нём по-прежнему остаются.

Любой дефект на поверхности твэла может со временем развиться в прямой контакт топлива и воды. В этом случае, резко возрастает выход радиоактивных изотопов в теплоноситель, который, в свою очередь, распространит их по всему контуру.

Но это всего лишь вершина айсберга. При прямом контакте увеличиваются приходящие в воду тепловые потоки. Интенсифицируются процессы диссоциации молекул воды, и высвобождающийся атомарный водород осаждается на циркониевой поверхности внутренней трубки (7).

Давно установлено, что при высоких температурах водород имеет склонность к быстрому поглощению в цирконии и циркониевых сплавах, ослабляя, тем самым, связи между атомами циркония. Как результат, на макроуровне наблюдается водородное охрупчивание - циркониевая оболочка становится хрупкой, и в твэле появляются ещё большие по размерам дефекты, то есть, происходит гидридное растрескивание циркония.

    Цитата из книги: Иолтуховский А.Г., Калин Б.А., Шмаков А.А. "Водородное охрупчивание и гидридное растрескивание циркониевых элементов легководных реакторов". // М.:МИФИ, 2001.

      В процессе эксплуатации циркониевые изделия активных зон водоохлаждаемых энергетических атомных реакторов подвергаются коррозии в теплоносителе - окислению и наводороживанию. При этом основными источниками накопления водорода в изделиях являются "коррозионный" водород, образующийся в результате взаимодействия циркония с теплоносителем - водой или пароводяной смесью, остаточная влага в ядерном топливе - таблетках UO2 и во внутритвэльном пространстве, а также некоторые продукты радиолиза воды - H2, H, OH, H2O2.

      Поглощённый изделиями водород, выделяясь затем в виде хрупкой гидридной фазы, резко ухудшает механические свойства конструкционных материалов (эффект водородного охрупчивания). Кроме того, с образованием гидридов связан особый механизм разрушения циркониевых сплавов - замедленное гидридное растрескивание. Особенно опасно протекание указанных процессов в тонкостенных оболочках тепловыделяющих элементов - твэлов, разрушение которых приводит к попаданию ядерного топлива или, по меньшей мере, газообразных и легколетучих продуктов деления в теплоноситель.

В патенте "Вестингауза" утверждается, что предварительное заполнение твэла газовой смесью, содержащей монооксид углерода (CO), позволяет существенно понизить скорость взаимодействия циркония и водорода.

Сделать это возможно за счёт предварительной накачки газа в верхний зазор (11) и последующей выдержки, позволяющей CO проникнуть в щели между урановыми таблетками (9). При появлении микротрещин у трубок (6) и (7), монооксид углерода будет выходить в теплоноситель.

Компания "Вестингауз" провела цикл исследований, по результатам которых было обнаружено - выходящий из твэла CO служит ингибитором для реакций, связанных с поглощением водорода в цирконии, причём скорости реакций падают на порядок. Ещё большего эффекта можно добиться, если предварительно нанести на циркониевые поверхности оксидный слой - сочетание оксидного слоя и выхода CO позволяет достигать 100-кратного снижения скоростей.

В экспериментах было также показано, что CO не взаимодействует ни с ураном из топливных таблеток, ни с циркониевыми оболочками твэлов. Из этого следует, что CO может находиться в активной зоне длительное время, сохраняя свои способности к замедлению эффектов наводороживания.

Физические причины столь положительного для атомных станций поведения CO заключаются в следующем - выходящий из микротрещин монооксид углерода имеет тенденцию собираться на тех же участках циркониевых поверхностей, что и водород. Таким образом, при появлении дефекта оболочка оказывается покрытой защитным слоем из CO, и шансы для атомов водорода добраться до циркония резко снижаются.

В патенте "Вестингауза" приводятся следующие цифры. В твэлы должна закачиваться газовая смесь под давлением 6-7 бар, содержащая 4,7-5,7% CO. Нижние границы давления и концентрации выбраны с таким расчётом, чтобы обеспечить надёжный выход требуемого количества моноксида.

Верхние пределы определяются теплопроводностью газа в твэле в условиях нормальной эксплуатации. Теплопроводность CO низкая. Так как этот газ будет находиться в прямом контакте с топливом, то при увеличении его концентрации выше некоторого предела возможен перегрев таблеток.

Подход "Вестингауза" к решению проблемы носит методически правильный характер, так как американская компания старается предотвратить развитие опасных ситуаций с ядерным топливом. Однако, как отмечает издание, заполнение моноксидом углерода поможет только тем конструкциям твэлов, где внутри оболочек предусмотрены большие свободные объёмы.

    Патент США №7570728 выдан 4 августа 2009 года.

ИСТОЧНИК: AtomInfo.Ru

ДАТА: 08.10.2009

Темы: ЯТЦ, Вестингауз

БФС-1 - физпуск критсборки для МОКС в ВВЭР-С
Для выполнения нейтронно-физических исследований были внесены изменения в проектно- конструкторскую и эксплуатационную документацию критического ядерного стенда БФС-1, Ростехнадзор выдал лицензию на проведение испытаний АО ГНЦ РФ - ФЭИ.
Начальник комплекса БФС Александр Жуков рассказал:
В преддверии физического пуска был полностью сформирован макет критической сборки без ядерных материалов внутри и представлен комиссии по ядерной безопасности, которая провела проверку готовности всех систем критического стенда и персонала, программы контрольного физического пуска, и разрешила проведение контрольного физического пуска.
После получения разрешения макеты порционно заменялись на настоящие твэлы с энергетическим плутонием.


На строящемся первом блоке АЭС Аккую завершилась поэтапная прокрутка на холостом ходу двигателей ГЦН

Второй блок Калининской АЭС остановлен на ППР

На Ленинградской АЭС введена в промышленную эксплуатацию система машинного зрения

В мире статус действующего имеют 416 блоков, статус строящегося 62 блока - PRIS

Монтаж компенсатора давления выполнен на Аккую-2

Четверо сотрудников инжинирингового дивизиона Росатома удостоены государственных наград

Росэнергоатом получил лицензию Ростехнадзора на размещение ядерной установки четвёртого блока Курской АЭС-2

В Японии начали очередной сброс воды с АЭС Фукусима-1

На строящейся АЭС Руппур проходит миссия pre-OSART

Китайская компания CPECC готова сотрудничать с вьетнамскими государственными энергетическими компаниями в сфере атомной энергетики

Машиностроители Росатома начали сборку корпуса реактора для атомного ледокола Ленинград

INVENTORUS и АО Оператор ТМиК подписали соглашение о стратегическом сотрудничестве

Westinghouse заключил соглашения с шестью канадскими поставщиками

Европейский инвестиционный банк предоставит Orano кредит на сумму 490 млн евро для расширения обогатительного завода

Второй блок Смоленской АЭС остановлен на ППР

Местные власти поддержали проект по строительству централизованного хранилища ОЯТ в Нью-Мексико

Регуляторы США приняли к рассмотрению отчёт Framatome о повышении глубины выгорания топлива в PWR

В Пекине прошло мероприятие Послы лицом к лицу с CNNC

На комплексе WIPP завершаются работы по созданию новой системы спецвентиляции

Монтаж второго яруса ВЗО завершён на Эль-Дабаа-2


Rambler's Top100 Рейтинг@Mail.ru

Поиск по сайту:


      Р В Р’ Р’ РІР‚™Р’В© AtomInfo.Ru – независимый атомный информационно-аналитический сайт, 2006-2025.
      Р В Р’ Р’ Р’ Р Р‹Р В Р вЂ Р В РЎвЂ˜Р В РўвЂ˜Р В Р’µРЎвЂљР ВµР В»РЎРЉРЎРѓРЎвЂљР Р†Р С• Р С• регистрации СМИ Р В Р’В­Р В Р’В» №ФС77-30792.
      ATOMINFO™ - зарегистрированный товарный знак.
      Р В Р’ Р’ Р’ Р’˜РЎРѓР С—ользование Р С‘ перепечатка материалов допускается РїСЂРё указании ссылки Р Р…Р В° источник.